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SUMMARY

In this paper, an original second-order upwind scheme for convection terms is described and imple-
mented in the context of a Control-Volume Finite-Element Method (CVFEM).
The proposed scheme is a second-order extension of the �rst-order MAss-Weighted upwind (MAW)

scheme proposed by Saabas and Baliga (Numer. Heat Transfer 1994; 26B:381–407). The proposed
second-order scheme inherits the well-known stability characteristics of the MAW scheme, but exhibits
less arti�cial viscosity and ensures much higher accuracy. Consequently, and in contrast with nearly all
second-order upwind schemes available in the literature, the proposed second-order MAW scheme does
not need limiters.
Some test cases including two pure convection problems, the driven cavity and steady and unsteady

�ows over a circular cylinder, have been undertaken successfully to validate the new scheme.
The veri�cation tests show that the proposed scheme exhibits a low level of arti�cial viscosity

in the pure convection problems; exhibits second-order accuracy for the driven cavity; gives accurate
reattachment lengths for low-Reynolds steady �ow over a circular cylinder; and gives constant-amplitude
vortex shedding for the case of high-Reynolds unsteady �ow over a circular cylinder. Copyright ? 2005
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Since the original development of the control-volume �nite-element method (CVFEM) by
Baliga and Patankar [1], CVFEMs have been developed, implemented and applied to vari-
ous �ow phenomena by many authors [2–11]. This method is attractive, as it combines the
mesh �exibility of a �nite-element approach with the physically meaningful formulation of
the control-volume method. With the proposition of the equal-order co-located scheme of
Prakash and Patankar [3], which permitted the calculation of pressure and velocity at the
same nodes, CVFEMs became easier to implement and use. The introduction, by Saabas and
Baliga [4] and Masson et al. [5], of the MAss-Weighted upwind scheme (MAW), which is an
adaptation for tetrahedral and triangular elements of the skewed positive in�uence coe�cient
upwind scheme of Schneider and Raw [12], signi�cantly improved the CVFEM’s stability
characteristics and applicability range. However, these �rst-order upwind schemes [4, 5, 12]
can produce high levels of arti�cial viscosity, especially when �ow direction is not aligned
with the grid and in cases of unsteady �ows [13]. For example, the �rst-order MAW scheme
applied to the unsteady �ows over a circular cylinder does not yield satisfactory results.
The arti�cial viscosity introduced by discretization errors causes Von-Karman vortices behind
a circular cylinder to decay and then disappear in the case of unsteady �ow at Re=100.
In the cases of steady �ows with Reynolds numbers lower than 40, the �rst-order MAW
scheme predicts a much shorter reattachment length than expected.
Many variations of high-order schemes for convection terms on unstructured mesh have

been proposed [14, 15]. Following the MAW scheme principle to ensure stability, an original
second-order upwind scheme for convection terms is proposed, implemented and validated in
this paper. The results obtained with the new scheme on �ve test cases (two pure convection
problems, the driven cavity, steady and unsteady laminar �ows over a circular cylinder) give
highly conclusive results.

2. GOVERNING EQUATIONS

The system of conservation equations for an incompressible �ow in a control volume V
enclosed by a surface A can be written in the following integral form:

1. Continuity equation ∮
A
�(Vm · n) dA=0 (1)

2. Momentum equation along the xi-axis

@
@t

∫
V
�ui dV +

∮
A
�ui(Vm · n) dA= −

∫
V

@p
@xi
dV +

∮
A
�(∇ui · n) dA (2)

3. General scalar transport equation

@
@t

∫
V
�� dV +

∮
A
��(Vm · n) dA=

∮
A
��(∇� · n) dA+

∫
V
S� dV (3)
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where � is the general transported and dependent variable; Vm is the mass-�ux (or convecting)
velocity whose components are determined by Equation (10); ui is the component along the
xi-axis of convected velocity u; n is the outward unit vector normal to the elementary surface
dA; �, � are the �uid density and viscosity; @p=@xi is the component along the axis xi of
pressure gradient; �� is the di	usion coe�cient of the general transported variable �, and S�
is the source term of � per unit volume.

3. NUMERICAL METHOD

The CVFEM used in this paper is based on the formulation presented in Reference [5]. Only
the aspects needed to understand the proposed second-order MAW scheme are presented in
this paper. The reader interested in a complete description of the CVFEM should consult
Reference [5].

3.1. Discretization

During the discretization procedure, the �nite-volume technique is used to convert the above-
mentioned equations into a system of algebraic equations. The governing equations are dis-
cretized and integrated over the control volume (CV) surrounding each node to obtain discrete
equations expressing the conservation of convected quantities in the control volume.
In the CVFEM, the unstructured mesh inherited from the �nite-element approach is used

in a co-located equal-order scheme. The spatial discretization procedure is based on triangular
elements at whose vertices all variables and pressure are stored. A polygonal control volume
(see Figure 1) around each node is formed by connecting the midpoints of the edges departing
from a given node c to the centroids of neighbouring triangular elements. The temporal
discretization is based on a �rst-order Euler scheme with a fully-implicit unsteady formulation.

3.1.1. General scalar transport equation. In integral form, the conservation equation for a
general transported scalar � in the control volume around node c (see Figure 1) can be

Figure 1. Unstructured mesh based on triangular elements.
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written as∫ o

a
(JD + JC) · n dA+

∫ d

o
(JD + JC) · n dA−

∫
caod

S� dV +
∫
caod

@
@t
(��) dV

+(Similar contributions from other elements associated with node c)

+ (Boundary contributions; if applicable)=0 (4)

where JC =�Vm� and JD = − �� · ∇� are the convection and di	usion �uxes, respectively.
In this formula, only the contributions from one triangular element (i.e. from the subcontrol

volume caod in Figure 1) are presented explicitly. The contributions for the other elements
associated with node c are determined in a similar manner.
Based on this formula, an ‘element-by-element’ assembling procedure can be used to con-

struct the discretized conservation equation of � in the control volume around each node,
which can be cast in the following general representation:

a��− ∑
nb
a�nb�nb= b

� (5)

where a� is the coe�cient of the central node c and a�nb are the coe�cients of its neighbour
nodes.

3.1.2. Momentum equations. The momentum equation is obtained from Equation (4), when
� corresponds to the velocity component ui along the axis xi and S� is the pressure gradient

auiui −
∑
nb
auinb(ui)nb= b

ui − VCV
(
@p
@xi

)
CV

(6)

or

ui= ûi − duii
(
@p
@xi

)
CV

(7)

where

ûi=
∑

nb a
ui
nb(ui)nb + b

ui

aui
(8)

and

duii =
VCV
aui

(9)

To prevent the occurrence of spurious pressure oscillations in the adopted co-located equal-
order formulation, following Rhie and Chow’s proposition [16], the mass �ux should always be
evaluated using a velocity component umi ‘staggered’ from the ‘convected’ velocity component
ui computed from the discretized momentum equation (Equation (6)).
Velocity Vm is called the ‘mass-�ux’ or ‘convecting’ velocity. Its components are computed

from the momentum equation (Equation (7)) but using the pressure gradient at the element
level instead of using the control-volume pressure gradient

umi = ûi − dui
(
@p
@xi

)
ele

(10)
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For the evaluation of the ‘mass-�ux’ velocity components on the faces a–o and o–d (see
Figure 1), ûi and duii are interpolated linearly from the corresponding values at the vertices
of the element.

3.1.3. Equation for pressure. By substituting the mass velocity determined by Equation (10)
in the continuity equation (Equation (1)), the discretized equation for pressure is obtained. It
has the same form as Equation (5).

app− ∑
nb
apnbpnb= b

p (11)

3.2. Boundary conditions

3.2.1. Dirichlet boundary conditions. On boundaries where the values of a variable � are
speci�ed, the following procedure is applied:

a�=1; a�nb=0; b�=�sp (12)

3.2.2. Neumann boundary conditions. When the gradient @�=@n is speci�ed on a boundary,
the �ux of � through the boundary surface is calculated from the given gradient @�=@n and
then added to the balance of � in the corresponding CV near the boundary.

3.2.3. Special treatment of BC for pressure equation. Some special treatments are needed
on boundaries with prescribed velocities. In the CVFEM proposed by Masson et al. [5], the
dui are set to zero at such nodes, and therefore

û= uspeci�ed and dui =0 (13)

However, in control volumes where the central node and all its neighbours lie on such bound-
aries, the central coe�cient ap of the pressure equation is reduced to zero, since ap is propor-
tional to dui . Consequently, the presence of such coe�cients can lead to physically unrealistic
solutions.
To avoid this problem, as proposed by Sma��li and Masson [17], the values of dui and ûi, at

nodes where the velocity is speci�ed, are calculated using Equation (9) and the momentum
balance of their control volume (Equation (7))

ûi= uspeci�ed + dui
(
@p
@xi

)
CV

(14)

4. FLO AND MAW SCHEMES FOR CONVECTION

In research done by Saabas and Baliga [4] and Masson et al. [5], two interpolation schemes
were used to evaluate the convection �uxes: FLow Oriented (FLO) and MAss Weighted
(MAW) schemes.
In the FLO scheme, the combination of exponential interpolation and the use of local

coordinate systems in each triangular element with axis parallel to the local �ow direction [1]
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Figure 2. Elementary triangular element.

made it an accurate convection scheme on unstructured meshes. The weakness of the FLO
scheme is its stability. For complex �ow con�gurations, it is di�cult to achieve convergence:
when high element Peclet numbers are encountered, the FLO scheme can lead to negative
coe�cients in algebraic discretized equations, and this di�culty is compounded when obtuse-
angled triangular elements are used [5].
The �rst-order MAW scheme [4, 5] is quite stable and is often used to calculate com-

plex �ows. MAW has acceptable accuracy for simple �ow con�gurations, but it produces a
considerable level of arti�cial viscosity when the mesh is not parallel to the �ow direction,
especially for unsteady �ows.
The proposed second-order MAW scheme inherits the main advantage of the MAW

scheme—its stability—but ensures much higher accuracy. Since the proposed second-order
scheme is based on the �rst-order MAW scheme, a complete description of the MAW scheme
follows.

4.1. The original MAW scheme

The original idea for the MAW scheme was proposed by Schneider and Raw [12] as a skewed
positive in�uence coe�cient upwinding scheme and has been adapted for tetrahedral elements
by Saabas and Baliga [4] and for triangular elements by Masson et al. [5].
Figure 2, illustrating a typical triangular element, indicates the notation convention for

vertex nodes (1, 2, and 3), the integration points for the evaluation of the convection �uxes
(ip1; ip2, and ip3), and the sign convention for the unit normals at control surfaces (nip1 ; nip2 ,
and nip3).
The MAW scheme de�nes a mass-weighted average of � at the integration point of each

of the three control surfaces of a triangular element (Figure 2), namely, �ip1 , �ip2 , �ip3 , in the
following manner: Let

ṁip1 =
∫ o

a
�Vm · nip1 dA; ṁip2 =

∫ o

e
�Vm · nip2 dA; ṁip3 =

∫ o

d
�Vm · nip3 dA (15)
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The value of a convected quantity at an integration point, for example at ip1 on the edge
oa of the CV boundary around node 1, is calculated as (see Figure 2)

�ip1 = A1:[f1R :�ip2 + (1− f1R):�2] + (1− A1):[f1L :�ip3 + (1− f1L):�1] (16)

where

A1 =

{
1 if ṁip1¿0 (i.e. the �ow through edge oa originates from its right side)

0 if ṁip1¡0 (i.e. the �ow through edge oa originates from its left side)

When the mass �ux through edge oa originates from its right side, i.e. from ip2 and=or
from node 2, then ṁip1¿0, A1 = 1 and only the �rst member of the RHS of Equation (16) is
used with the weighting factor f1R , determined as

f1R =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if ṁip2¿ṁip1¿0

ṁip2
ṁip1

if ṁip1¿ṁip2¿0

0 if ṁip1¿0¿ṁip2

(17)

The weighting factor f1R is used to interpolate �ip1 as a linear function of �ip2 and �2,
depending on the ratio of mass �uxes coming from the integration point ip2 and node 2. This
weighting factor is used to distinguish among three situations:

1. If ṁip2¿ṁip1¿0, the mass �ux through edge oe �ows to both ip1 and node 2. With
f1R =1, from Equation (16), �ip1 is taken as equal to the upwind value: �ip1 =�ip2 .

2. If ṁip1¿ṁip2¿0, the resulting mass �ux ṁip1 partly originates from ip2 and from node 2.
The weighting factor f1R = ṁip2=ṁip1 allows us to interpolate �ip1 from its upwind values
�ip2 and �2.

3. If ṁip1¿0¿ṁip2 , the mass �ux �ows from node 2 to both ip1 and ip2. So f1R =0
ensures �ip1 =�2.

When the mass �ux at ip1 originates from the left side of edge oa, i.e. from ip3 and=or
node 1, ṁip1¡0, A1 = 0 only the second member of RHS of Equation (16) is used to interpolate
�ip1 in a similar manner.
Finally, by writing Equation (16) for three integration points in a triangular element, a

system of three linear equations for three unknowns �ip1 , �ip2 , �ip3 is obtained

�ip1 − A1:f1R :�ip2 − (1− A1):f1L :�ip3 = A1:[(1− f1R):�2]
+ (1− A1):[(1− f1L):�1]

−(1− A2):f2L :�ip1 + �ip2 − A2:f2R :�ip3 = A2:[(1− f2R):�3]
+ (1− A2):[(1− f2L):�2]

−A3:f3R :�ip1 − (1− A3):f3L :�ip2 + �ip3 = A3:[(1− f3R):�1]
+ (1− A3):[(1− f3L):�3]

(18)
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This system can be easily solved to �nd the values of convected parameter at three integration
points as function of the values �1, �2, �3 at vertices of the triangular element and of the
mass �uxes ṁip1 , ṁip2 , ṁip3 .
These mass-weighted averages of � are assumed to prevail over each control surface when

the surface integrals of the convection terms, Equation (4), are evaluated. Consequently, the
convection contributions are simply expressed as∫ o

a
JC · n dA=−ṁip1�ip1 (19)

∫ d

o
JC · n dA= ṁip3�ip3 (20)

It should be noted that ṁip1 and ṁip3 are mass �ow rates across the corresponding control
surfaces, in the directions of the normals nip1 and nip3 , respectively (see Figure 2).
The algebraic approximation to the elemental convection contribution can be compactly

expressed as follows:

∫ o

a
JC · n dA+

∫ d

o
JC · n dA=C�1 �1 + C�2 �2 + C�3 �3 (21)

Expressions similar to Equation (21) can be derived for the convection contributions of
all elements associated with the internal node c shown in Figure 2. Such expressions, when
substituted into Equation (4), yield the complete convection contribution to the discretization
equation for node c (Equation (5)).
Equations (18) explain how the value of � at an integration point is interpolated from

the values at its two upwind points using the mass �ux through the three integration points.
At the same time, it ensures the ‘skewed’ and ‘positive in�uence-coe�cient’ characteristics
of the original MAW scheme:

1. The transported quantity � at each integration point is interpolated from the values of
its two upwind points: an upwind integration point and an upwind node. The ‘skewness’
characteristic is manifested by �exibly interpolating the values at two upstream positions:
the upwind points are not �xed rigidly by the grid (as in the unidirectional upwind
scheme, for example) but are taken as closely as possible to the upstream nodes along
streamlines.

2. Secondly, Equations (18) ensure, at the element level, that the extent to which the de-
pendent variable at a node exterior to a control-volume contributes to the convective
out�ow is less than or equal to its contribution to the in�ow by convection. Thus, it
is a su�cient condition for ensuring that the algebraic approximations to the convec-
tive terms add positively to the discretized equation [5], which guarantees numerical
stability.

Brie�y, the use of a �exible ‘skewed’ choice of upwind nodes in a ‘positive coe�cient’
balance of convected quantities makes the original MAW scheme very stable and relatively
accurate.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:749–771
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5. SECOND-ORDER SCHEMES FOR CONVECTION

5.1. Second-order versus �rst-order

Generally, in second-order schemes, to calculate the value �ip of a transported quantity at an
integration point, the linear variation of � from an upwind point to the integration point is
assumed. The linear variation of � from an upwind node to an integration point is calculated
as the scalar product of the gradient of � at the upwind node and the displacement vector
between these two points

�ip =�UpwindNode +∇�UpwindNode:�rUpwindNode→ip + O((
s)2) (22)

This is more accurate than in the �rst-order upwind scheme, where the value of �ip at an
integration point is simply taken as equal to the value of its upwind point

�ip =�UpwindNode + O(
s)

In summary, the piecewise variation of � in the �rst-order scheme is replaced by the linear
variation in the second-order scheme, increasing the order of the truncation error from O(
s)
in the �rst-order scheme (here 
s is the mesh size) to O((
s)2) in the second-order scheme.

5.2. New second-order MAW scheme

Equation (16) is the basis of the �rst-order MAW scheme. In order to construct a second-
order scheme having the skewness and positive-in�uence coe�cient characteristics of the
MAW scheme, the stepwise variation of � assumed in Equation (16) has to be replaced by
a piecewise-linear variation. This leads to the following expression:

�2ndip1 = A1:[f1R :(�
2nd
ip2
+ 
�ip2→ip1) + (1− f1R):(�2 + 
�node2→ip1)]

+ (1− A1):[f1L :(�2ndip3 + 
�ip3→ip1) + (1− f1L):(�1 + 
�node1→ip1)] (23)

where


�ip2→ip1 = (∇�)ele:�rip2−ip1 (24)


�ip3→ip1 = (∇�)ele:�rip3−ip1 (25)

and


�node2→ip1 =∇�2:�rnode2−ip1 (26)


�node1→ip1 =∇�1:�rnode1−ip1 (27)

represent the main contributions of the new second-order MAW scheme. �rnode1–ip1 and
�rnode2−ip1 are the distance vectors between integration point ip1 and the nodes 1 and 2,
respectively. �rip1–ip1 and �rip3–ip1 are the distance vectors between integration point ip1 and
the integration points 1 and 3, respectively. ∇�1 and ∇�2 are volume-averaged gradients
of � associated with the control volumes of nodes 1 and 2, respectively. For example, the
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Figure 3. Node stencil.

volume-averaged gradient of � associated with the control volume of node 1 (see Figure 1)
is calculated using the following expression:

∇�1 = 1
V1

∫
caod

(∇�)ele dV

+(Similar contributions from other elements associated with node 1) (28)

In this formula, V1 is the volume of the control volume around node 1 and (∇�)ele is the
gradient of � at the element level computed by interpolating linearly � in each element.
Only the contributions from one triangular element (i.e. from the subcontrol volume caod in
Figure 1) are presented explicitly in Equation (28). The contributions for the other elements
associated with node 1 are determined in a similar manner by using an ‘element-by-element’
assembling procedure.
The original �rst-order MAW scheme involves only the values of � at the nodes of the

triangular element of interest. Consequently, the resulting node stencil for the discretized
momentum equation of node c when using the original �rst-order MAW scheme involves the
nodes of all the triangular elements having node c as one of their vertices (nodes identi�ed
by the full circle in Figure 3). In the proposed second-order MAW scheme, the contributions
of the control-volume volume-averaged gradients of � introduce additional nodes to the node
stencil identi�ed by the open circles in Figure 3.
The second-order contribution to the value of � at the three integration points can be de�ned

as the di	erence between the second-order and �rst-order values of � at the integration points
as follows:


�ip1 =�
2nd
ip1

− �ip1

�ip2 =�

2nd
ip2

− �ip2

�ip3 =�

2nd
ip3

− �ip3

(29)

where �ip1 , �ip2 and �ip3 correspond to the values of � at the integration points given by the
original �rst-order MAW scheme when solving Equations (18).
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Subtracting Equation (16) from Equation (23) and using the de�nitions of the second-order
contribution to the value of � at the three integration points (see Equation (29)) yields

��ip1 = A1:[f1R :(��ip2 + 
�ip2→ip1) + (1− f1R):
�node2→ip1 ]

+ (1− A1):[f1L :(��ip3 + 
�ip3→ip1) + (1− f1L):
�node1→ip1 ] (30)

The weighting factors f1R and f1L determined by the ratio of mass �uxes coming from upwind
nodes in Equation (23) remain unchanged, they are the same as in the original MAW scheme.
This equation links together 
�ip1 , 
�ip2 , 
�ip3—the unknown second-order contributions at
the three integration points of the triangular element.
When the three equations for the three integration points of a triangular element are con-

structed, a system of three linear equations for three unknown 
�ip1 , 
�ip2 , 
�ip3 is obtained

��ip1 − A1f1R��ip2 − (1− A1)f1L��ip3 = A1[(1− f1R)
�node2→ip1 ]

+ (1− A1)[(1− f1L)
�node1→ip1 ]

+A1[f1R
�ip2→ip1 ]

+ (1− A1)[f1L
�ip3→ip1 ]

−(1− A2)f2L��ip1 + ��ip2 − A2f2R��ip3 = A2[(1− f2R)
�node3→ip2 ]

+ (1− A2)[(1− f2L)
�node2→ip2 ]

+A2[f2R
�ip3→ip2 ]

+ (1− A2)[f2L
�ip1→ip2 ]

−A3f3R��ip1 − (1− A3)f3L��ip2 + ��ip3 = A3[(1− f3R)
�node1→ip3 ]

+ (1− A3)[(1− f3L)
�node3→ip3 ]

+A3[f3R
�ip1→ip3 ]

+ (1− A3)[f3L
�ip2→ip3 ]

(31)

The solution of this system will yield 
�ip1 , 
�ip2 and 
�ip3—the contributions of the
proposed second-order MAW scheme to the values of the transported variable � at the three
integration points ip1, ip2 and ip3 in each triangular element.
The second-order mass-weighted averages of � are assumed to prevail over each control

surface when the surface integrals of the convection terms, Equation (4), are evaluated. Con-
sequently, the convection contribution is simply expressed as∫ o

a
JC · n dA = −ṁip1�2ndip1 = − ṁip1 (�ip1 + 
�ip1) (32)

∫ d

o
JC · n dA = ṁip3�2ndip3 = ṁip3 (�ip3 + 
�ip3) (33)
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The algebraic approximation of the elemental convection contribution can be compactly
expressed as follows:

∫ o

a
JC · n dA+

∫ d

o
JC · n dA=C�1 �1 + C�2 �2 + C�3 �3 +D� (34)

The expressions for C�1 , C
�
2 , and C

�
3 in Equation (34) are exactly the same as those for the

original MAW scheme appearing in Equation (21). However, a new contribution now appears,
denoted D�, and expressed as

D�= ṁip3 :
�ip3 − ṁip1 :
�ip1 (35)

Expressions similar to Equation (34) can be derived for the convection contributions of
all elements associated with the internal node c shown in Figure 2. Such expressions, when
substituted into Equation (4), yield the complete convection contribution to the discretization
equation for node c (Equation (5)).
To implement this second-order MAW scheme, a deferred correction approach [18] is

adopted: the second-order contribution D� is treated explicitly and added to the source term
in the right-hand side of the discretization equation for node c. Consequently, when using
the proposed second-order MAW scheme, the in�uence coe�cients remain the same as in the
original MAW scheme. This contributes to the stability of the proposed solution procedure.
The similarity between the system of Equations (31) and the system shown in Equa-

tions (18) is obvious. Compared to Equations (18), all matrix coe�cients in Equations (31)
remain the same. Only the unknowns �ip in Equations (18) are replaced by 
�ip. On the
right-hand side, the values of �i at the integration points are replaced by 
�ip, the second-
order contributions. The second-order contributions 
�ip are computed in the same manner as
are the values of � at the integration points in the original MAW scheme. These second-order
contributions follow the spirit of the skewed positive-in�uence coe�cient upwind scheme pro-
posed by Schneider and Raw [12] and will contribute positively to the in�uence coe�cient.
Since the second-order values of � at the integration points, �2ndip , are the sum of two quanti-
ties computed using the positive in�uence-coe�cient scheme of Schneider and Raw, namely
�ip and 
�ip, a stable system of discretization equations is obtained. Furthermore, the pro-
posed second-order MAW scheme is not unidirectional but skewed, as is the original MAW
scheme, which is more precise and more �exible than are unidirectional schemes [12].
In general, second-order schemes are less stable than �rst-order schemes so that limiters

are needed to maintain numerical stability. These limiters restrict the second-order contribu-
tions when needed by applying multipliers (between 0 and 1) to the node gradients. This
ensures that, there are no new extrema generated at integration points by the introduction
of second-order terms [14]. The proposed second-order MAW scheme is very stable without
the use of such conventional limiters. It is validated in the test cases carried out for the
veri�cation, where all calculations converged well without using conventional limiters. It is
to be noted however that the mass-weighted second-order corrections 
�ip computed using
Equations (31) contributes positively to the in�uence coe�cients in the same spirit than the
original MAW scheme. It may be considered as a form of continuous limiter, which is not
constructed separately and used ocasionally like some conventional limiters, but is integrated
in the construction of the proposed scheme.
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6. VERIFICATION TESTS

6.1. Pure convection problem

To evaluate the di	erence in level of arti�cial viscosity between �rst- and second-order MAW
schemes, a pure convection problem, where the di	usion coe�cient of transported parameter
is set equal to zero, is �rst analysed.
Since the velocity �eld is uniform and the di	usion coe�cient is zero, the di	usion, if

present in the discretized solution, is caused only by the arti�cial viscosity originating from
truncation errors of the numerical scheme.

6.1.1. Shear layer. In the case of the shear layer problem, the computation domain is a
1 m× 1 m square discretized with 441 nodes distributed uniformly (21 nodes× 21 nodes).
The uniform velocity �eld is not parallel to the main mesh directions, but parallel to the

diagonal y= x, as illustrated in Figure 4 (V=1–+1—). A piecewise pro�le of temperature is
imposed at the computational-domain inlets: T =400◦C on boundary x=0 and T =200◦C on
boundary y=0. The discretized solutions were assumed to be converged when the sum of
the absolute values of the non-dimensional residues were below 10−8.
Figure 5 shows the temperature �elds obtained with the �rst-order (top), FLO (middle)

and second-order (bottom) schemes. The isotherms obtained with the second-order and FLO
schemes are almost parallel to the �ow direction, while the isotherms of the �rst-order scheme
diverge strongly from the direction of the �ow.
Figure 6 shows the temperature pro�les obtained with four di	erent schemes along the

diagonal perpendicular to the �ow direction (x + y=1). They are compared with the exact
discretized solution for this 21× 21 uniform grid.

0 1
T = 200 X

0

0.5

1

T
 =

 4
00

Y

Flow
Direction

0.5

Figure 4. Mesh for pure convection shear layer.
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Figure 5. Shear layer: temperature �elds obtained with original �rst-order MAW scheme (top), FLO
scheme (middle) and new second-order MAW scheme (bottom).
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Figure 6. Shear layer: temperature pro�les along the diagonal
(x + y=1) perpendicular to the �ow direction.

6.1.2. Convected front. In the case of the convected front problem, the computation domain
is a 1m× 1m square discretized with 1681 nodes distributed uniformly (21 nodes× 21 nodes).
The uniform velocity �eld is parallel to the main mesh directions (V=1–). Initially, the �uid

temperature in the computational domain is set to 200◦C. However, the �uid entering at the
computational-domain inlet has a temperature of 100◦C while adiabatic boundary conditions
are applied on boundaries y=0 and y=1m. With such boundary conditions, it is clear that
the exact solution corresponds to a convected front which can be expressed as follows:

T (x; y; t)=

{
100 if x6 |V|t
200 if x¿|V|t

(36)

In this unsteady case, the discretized solutions at a given time step were assumed to be
converged when the sum of the absolute values of the non-dimensional residues were below
10−8. A time-step size of 0:01 s was used for this problem.
Figure 7 shows the temperature pro�les obtained with four di	erent schemes along the

horizontal centreline (x= 1
2) at t=0:5s. They are compared with the exact discretized solution

for this 41× 41 uniform grid.
From the results of these two simple pure convection problems, it is clear that the proposed

second-order MAW scheme considerably reduces the in�uence of arti�cial viscosity with
respect to the original �rst-order MAW scheme and reaches the MUSCL scheme’s level of
accuracy.
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Figure 7. Convecting front: temperature pro�les along horizontal centreline at t=0:5 s.

6.2. Driven cavity

The classical 2D square-driven cavity problem 06 x6L, 06y6L with u(x; L)=Uwall
is used to demonstrate the performance of the proposed second-order MAW scheme (see
Figure 8). To qualify the accuracy of the proposed formulation, calculations have been per-
formed on three di	erent uniform grids using the MAW, MUSCL and FLO schemes. The
discretized solutions were assumed to be converged when the sum of the absolute values
of the non-dimensional residues were below 10−8. Convergence histories down to machine
precision acheived by these schemes are presented in Figure 9. Table I compares values of
minimal and maximal centreline velocities at Re=400. The Reynolds number for this prob-
lem has been de�ned as Re=�UwallL=�. The relative errors, calculated with respect to the
benchmark solution of Ghia et al. [19], show the second-order accuracy of both the proposed
second-order MAW and the MUSCL schemes (see Figure 10).
Using the second-order MAW scheme, the proposed CVFEM yields results that are in good

agreement with the benchmark calculations made by Ghia et al. [19]. However, the MAW
scheme computations systematically display lower accuracy, con�rming the observations of
Saabas et al. [1, 5].

6.3. Flow over a circular cylinder

Laminar incompressible �ow around a circular cylinder is a classical problem and is well
documented in the literature. To accurately simulate this phenomenon, it is essential to employ
a high-accuracy discretization scheme. This problem is consequently a good validation test
for the proposed second-order MAW scheme.
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Figure 8. De�nitions for lid-driven cavity �ows.
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Figure 9. Lid-driven cavity: convergence history.

At low Reynolds numbers (Re¡40), the �ow �eld over the cylinder is stationary and is
characterized by the presence of a pair of symmetric vortices. At higher Reynolds numbers, the
�ow becomes unsteady, asymmetric and alternate vortex shedding occurs behind the cylinder.
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Table I. Lid-driven cavity: maximum and minimum centreline velocities-Re=400.

Average

Scheme Grid
Umin
Uwall

(rel. error)
Vmin
Uwall

(rel. error)
Vmax
Uwall

(rel. error) rel. error

MAW 32× 32 −:20729 (−36:6%) −:33468 (−25:6%) :20237 (−33:0%) 31.7%
MAW 2nd order −:33513 (2:4%) −:46982 (4:4%) :31478 (4:2%) 3.7%
FLO −:25841 (−21:0%) −:37622 (−16:4%) :24042 (−20:4%) 19.3%
MUSCL −:33286 (1:7%) −:43728 (−2:8%) :31279 (3:6%) 2.7%

MAW 64× 64 −:24827 (−24:1%) −:37509 (−16:6%) :23567 (−22:0%) 20.9%
MAW 2nd order −:33104 (1:1%) −:45829 (1:9%) :30680 (1:6%) 1.5%
FLO −:30192 (−7:8%) −:42476 (−5:6%) :27823 (−7:9%) 7.1%
MUSCL −:32966 (:7%) −:44540 (−1:0%) :30656 (1:5%) 1.1%

MAW 128× 128 −:28012 (−14:4%) −:40763 (−9:4%) :26206 (−13:2%) 12.3%
MAW 2nd order −:32703 (−:1%) −:45202 (:5%) :30028 (−:6%) .4%
FLO −:32052 (−2:1%) −:44475 (−1:1%) :29548 (−2:2%) 1.8%
MUSCL −:32800 (:2%) −:45169 (:4%) :30287 (−:3%) .3%

Ghia [19] 129× 129 −:3273 (0%) −:4499 (0%) :3020 (0%) 0%
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Figure 10. Lid-driven cavity: grid-resolution study.

The vortex generation period, characterized by its Strouhal number, depends on the Reynolds
number.
This �ow problem shows the ability of the proposed second-order MAW scheme to

accurately predict �ow structure, reattachment length and the Strouhal number by comparing
predictions against experimental results.
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Figure 11. Mesh for the calculation of �ow around the circular cylinder.

6.3.1. Mesh. An unstructured mesh based on triangular elements is used in the entire calcu-
lation domain (Figure 11). It is composed of 5500 nodes and is perfectly symmetric around
the centre line. In the cases of steady �ows occurring at low Reynolds numbers, before the
occurrence of vortex shedding, the solution is symmetric. A symmetric mesh was chosen be-
cause it is a necessary condition to obtain a perfectly symmetric solution, which then served
as one of the criteria for verifying the implementation of the proposed scheme.
The domain width is about 10 times the cylinder diameter D (D=1 m) and its length is

about 5D upstream and 20D downstream.

6.3.2. Speci�ed conditions. The inlet includes a semi-circle at the left and also two horizontal
boundaries above and below the computational domain. At these inlets, the velocity is set to
a value of 1m=s parallel to x-axis. At the outlet (the right vertical boundary), the manometric
pressure is imposed equal to zero. The �uid density is 1kg=m3 and the viscosity � is speci�ed
in such a way as to obtain the desired Reynolds number.
To simulate an unsteady �ow over a circular cylinder, a perturbation must be introduced

into the �ow at the beginning of the simulation. The nature of this initial perturbation does not
in�uence the �ow characteristics [20]. In this paper, the �ow perturbation has been introduced
simply by imposing an asymmetric velocity pro�le at the beginning of the simulation, and by
running it brie�y, for example during 1–2 vortex shedding periods, and then continuing with
the normal symmetric boundary conditions described above.

6.3.3. Reattachment length at a low Reynolds number. At Re6 40, the �ow is steady with
two symmetric vortices attached behind the cylinder. The reattachment length L is measured
from the downstream side of the cylinder to the point on the centre line where the x velocity
component reaches a value of zero. The discretized solutions were assumed to be converged
when the sum of the absolute values of the non-dimensional residues were below 10−8.
Convergence histories down to machine precision acheived by these schemes are presented in
Figure 12.
The relative reattachment length, L=D, depends on the number. At Re=40, the experimental

value of L=D is about 2.2 [20]. Because of the high rate of the arti�cial arti�cial viscosity,
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Figure 12. Circular cylinder: convergence history.

the original �rst-order MAW scheme underestimates L=D, as approximately 1.8 (Figure 13,
top). The proposed second-order MAW scheme L=D, around 2.2 (Figure 13, bottom).

6.3.4. Period of vortex shedding in the unsteady �ow at a high Reynolds number. When the
Reynolds number is higher than 40, the �ow regime becomes unsteady. At Re=100, the Von-
Karman street behind the cylinder is well de�ned (see Figure 14) with a �xed vortex shedding
frequency f. In this unsteady case, the discretized solutions at a given time step were assumed
to be converged when the sum of the absolute values of the non-dimensional residues were
below 10−8. A time-step size of 0:1s was used for this problem. The experimental value of the
corresponding Strouhal number (St=D:f=U∞) at Re=100 is 0.165 [20, 21], corresponding
to a vortex shedding period T of 6:06 s. The proposed second-order MAW scheme gives a
fairly good value of T ≈ 6:0 s (cf. Figure 15, right), corresponding to a Strouhal number
of 1.66. The vortex shedding is strongly damped when using the �rst-order MAW scheme
(cf. Figure 15, left).

6.4. Summary

In comparison with the �rst-order MAW scheme, the proposed second-order MAW scheme
does not need more computer memory and the convergence is achieved practically with the
same amount of iterations. The proposed scheme is more precise and generates less arti�cial
viscosity than the original �rst-order MAW scheme. It is also as stable as the �rst-order
MAW scheme and can converge even on grids having elements with obtuse angles, where
the accurate FLO scheme, is certain to diverge. Consequently, the proposed second-order
MAW scheme produced a more precise solution than the original �rst-order MAW scheme
with the same amount of computer resources (memory and CPU time).
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Figure 13. Streamlines behind the cylinder at Re=40: �rst-order MAW scheme solution
(top), second-order MAW scheme solution (bottom).
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Figure 14. Absolute velocity contour around the cylinder at Re=100—second-order MAW scheme.
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Figure 15. Transversal velocity at a point on centre line behind a circular cylinder in the
unsteady �ow at Re=100. First-order MAW scheme: decaying velocity amplitude (left);

second-order MAW scheme: constant velocity amplitude (right).

7. CONCLUSIONS

A new second-order scheme for convection terms, based on the original �rst-order MAW
scheme, has been developed, implemented and validated in this paper.
Compared to the original �rst-order MAW scheme, the new scheme exhibits less arti�cial

viscosity and yields excellent results in the test cases of a pure convection problem, and
steady and unsteady �ows over a circular cylinder.
Furthermore, the new second-order MAW scheme inherits the well-known stability charac-

teristics of the original �rst-order scheme. In the �ve test cases carried out for the validation
of this new scheme, calculations were converged without the use of limiters. This is in clear
contrast to the second-order scheme available in the literature.
In general, when the �ow direction is aligned with the grid, �rst-order upwind discretizations

are acceptable. However, when the �ow is no longer aligned with the grid, �rst-order upwind
discretizations exhibit large discretization errors. Since the �ow direction is generally not
aligned with the grid in unstructured meshes, numerical results are more accurate when second-
order formulations are used, especially for complex con�gurations. The proposed second-order
MAW scheme, with its accuracy and high stability, is therefore well suited for complex �ow
con�guration.
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